SysAdmin Solutions

Tips for Handling Tasks

HTML Forms for Business on the Web

>

n October 1995, we looked at how to

create a basic World Wide Web home

page using the Hypertext Markup Lan-
guage (HTML). Some of the more
advanced capabilities of HTML can be
applied to create a home page suitable
for business needs. After all, being able
to create a home page where interested
parties can read your information is fine,
but enabling visitors to provide feedback
and interact with your home page—and
ultimately your company—is of even
greater value to your business.

We will look at some of the methods
for creating Web pages to allow the user to
enter and subsequently capture informa-
tion for applications such as requests for
information, being added to your mailing
list, surveys, orders or just about anything
else for which you want the user to pro-
vide you with information.

A standard Web page is by nature sta-
tic. That is, the person reading your Web
page is using Web browser software to
interpret the HTML file you have created
and placed on your Web server. The
HTML document is simply called up on
the server and delivered in a static, read-
only fashion to the user.

To create dynamic Web pages for two-
way communications that possess the
capability to capture and store informa-
tion, it's necessary to use additional HTML
elements to design a form. Typically this
is done by creating a script on the server,

56 uniForum’s ITSolutions FEBRUARY 1996

Adding a simple form to your home
page can increase user interaction
and produce valuable information

about your customers.

which is then executed by the Web serv-
er, which in turn creates the HTML doc-
ument on the fly and delivers it to the
user. Web scripts can be created in almost
any programming language capable of
reading from the standard input (key-
board), writing to the standard output (ter-
minal) and accessing environment vari-
ables. Probably the most commonly used
language for this is Perl, though C works
well also.

Because the Web was originally
designed as a one-way communications
medium, a new protocol was invented
that combines a number of elements to
make two-way communications possible.
The Common Gateway Interface (CGI)
protocol is necessary for Web server and
remote client to communicate with each
other. The CGI protocol oversees the
communication and transmission of data
between the client on the Web server, the
Web server itself and the script.

Creating a Form

We're going to create a simple entry form
to collect information for mailing lists. In
the process, we will ask a few simple
questions to gather some pertinent infor-
mation about the individual submitting
the information request, as well as the
specific product he/she is interested in.
We are going to include standard fields
like name, address, company name,
phone number, fax number and e-mail

address, along with some check boxes
and a free-form area in which the user
may enter other comments or suggestions
that are not included on the standard
form. If | were actually to publish this
home page, | would add other HTML ele-
ments to the page, like underlines or solid
bars to break up the presentation of the
information on the page. (See UniForum
Monthly, Oct. 1995, for information on
using some of these elements.)

As we proceed, please refer to the
numbered listing for our home page form
document. We'll break it down to each of
the new HTML elements or markup tags
used to create the form. If you have access
to Web browser software and have not
created a home page, you can use the fol-
lowing to create an HTML document and
see how the page would appear if pub-
lished on the Web. For clarity here, HTML
tags are displayed in uppercase letters. In
reality, HTML doesn't care if it is upper-
or lowercase. However, uppercase markup
tags are easier to locate during editing.

In the first eight lines, we declare this
as an HTML document. We also declare
(and later undeclare) the initial header,
the document title and a reverse hyper-
text link to this site’s Webmaster, so the
reader provides feedback on this particu-
lar Web page to whoever “made” it; this is
generally a useful feature. The remainder
includes a reference to a GIF file for an
image and secondary header, Information
Request, declared and undeclared with
<H1> and </H1>.

Line 9 is the prelude to the interactive
form section of the document, where the
individual viewing this page will provide
the information we want in order to be
added to our mailing list. To use the nec-
essary HTML markup tags for creating
forms, though, we have to declare the
portion of the document that contains the
forms tags we will be using. Let’s use the
<FORM> and </FORM> tag pair to encap-
sulate the section of the document con-
taining the interactive portion of the form.
The FORM tag with the ACTION attribute

in line 11 indicates what will be done with
the form once completed.

Lines 12 and 13 use the real backbone
of HTML forms, the INPUT tag or element.
Additional attributes can be assigned to
INPUT, including ALIGN for alignment left,
middle or right; CHECKED to automati-
cally check a checkbox without input from

1) <HTM.>
2) <HEAD>

the user; MAXLENGTH to indicate the
maximum length of an input field; NAME
to assign a variable name to the INPUT
field; SIZE to specify the size of the input
box (if the MAXLENGTH is greater than
the SIZE, the text will scroll in the box)
and TYPE. The most commonly used val-
ues for the TYPE attribute are text for tex-

3) <TITLE> XYZ Inc.’s Request for Additional Information</TITLE>
4) <LINK REV="nmade” HREF=" webmaster @yz.coni >

5) </ HEAD>
6) <BODY>

tual information, password for password
entry, checkbox for a box to be checked
off, radio for a radio button, submit to
submit the form for processing and reset to
clear all entries on the form and reset any
checkboxes, radio buttons, and so on to
their original default values.

In these lines we use two checkboxes

7)

8)

9)

10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
41)
42)
43)
44)

<I MG SRC="/gi f s/ xyxl ogo. gi f” ALT="XYZ Inc.”>

<H1>| nf or mati on Request </ H1>

Pl ease enter your infornation request and contact infornmation and it will
be emailed to XYZ Inc. staff.<P>

<FORM ACTI ON="/ ht bi n/ emai | /i nfo@yz. cont >

<I NPUT TYPE="checkbox” NAME="general” CHECKED> General | nformati on

<I NPUT TYPE="checkbox” NAME="new’> New Product | nformati on

<| >What new product information would you |ike?</I|>

<SELECT NAME=“|NFO' S| ZE="2" MJLTI PLE>

<OPTI ON SELECTED>St andard G znps

<OPTI ON SELECTED>Hi gh Perfornmance G znps

<OPTI ON SELECTED>P| asma Processor G znps

<OPTI ON SELECTED>Li qui d Cool ed Pl asma G znos

</ SELECT>

</ P>

<I NPUT NAME="f nane” S| ZE="30"> First Name

<I NPUT NAME="| nane” S| ZE="30"> Last Nane

<I NPUT NAME="addr ess1” SIZE="30"> Address 1

<|I NPUT NAME=" addr ess2” S| ZE="30"> Address 2

<I NPUT NAME="city” SIZE="20"> City

<I NPUT NAME="state” S|ZE="2"> State

<I NPUT NAME="zi p” SIZE="10"> Zi pcode

<I NPUT NAME="emai|” SIZE="30"> Your email| address

<I NPUT NAME="subj ect” SIZE="30"> Subj ect

<|I NPUT NAME=" phone” S| ZE="30"> Phone

<I NPUT NAME="fax” S| ZE="30"> FAX

<pP>

Comrents:

<TEXTAREA NAME="t ext” ROAS=8 COLS=60>

</ TEXTAREA>

<I NPUT TYPE="submit” VALUE="Submit”>

<I NPUT TYPE="reset” VALUE="Reset”> <P>

</ FORM>

<HR>

<ADDRESS>&l t ; i nf o@yz. com> ; </ ADDRESS>

<I MG SRC="/gi f s/ xyzhomne. gi f” ALT="HOWE" ></ A>
</ BODY>

</ HTM>

FEBRUARY 1996 UniForum’s ITSolutions

57

SysAdmin Solutions

HTML Forms for Business on the Web

to determine the type of information the
user would like, general or new products.
The first checkbox uses an additional tag
called CHECKED, which will automati-
cally present the box as being checked.
By doing this, we arrange for the person
responding to this page to be sent gen-
eral information on the company without
having to check the box.

New Product Information

Lines 14 through 21 ask what information
on our new products the user would like.
If the user checks the New Product box,
a pop-up list is presented next to the ital-
icized line (the <I> and </I> tags), ask-
ing, “What new product information
would you like?” Let’s look at how to
implement the pop-up list under HTML.

This list begins on line 15, with a net
HTML tag called SELECT followed by four
available options for the SELECT tag, as
indicated with the OPTION SELECTED
tags. However, I've added two more
options to the SELECT tag: SIZE and MUL-
TIPLE. Without these tags, the pop-up list
would simply appear and allow the user
to select only one of the items presented
on the list. By using the SIZE option, a
window pops up with the only the first
two items from the list. However, a scroll
bar is also displayed, allowing the user to
scroll up and down through the list. In
this example, the list of only four items
could be displayed easily on the screen;
with a longer list, this would become an
important feature. So, other than a win-
dow with only two items and a scroll bar,
SELECT is essentially unchanged.

With the addition of the MULTIPLE
option comes a change in the behavior of
the pop-up list. When MULTIPLE is includ-
ed with the SELECT tag, the user can select
more than one item from the list. By click-
ing the mouse on one of the options and
then moving the mouse up or down the
list, multiple options can be selected. We
complete this section with the </P> or
paragraph tag to create a new line.

We could also have used multiple
radio buttons or checkboxes, but for larg-
er lists that would get cumbersome. One
drawback of using the SELECT tag, how-
ever, is developing the necessary code to
parse multiple values with the same names
into individual data elements. To my
knowledge, HTML does not provide an

58 uniForum’s ITSolutions FEBRUARY 1996

elegant method of breaking down the data
stream. As such, you will need to handle
this in your back-end script or program.

Capturing the User

Lines 22 through 33 use a series of named
INPUT elements to capture the informa-
tion we need to add a person to the mail-
ing list. When using named INPUT ele-
ments, the value assigned to the NAME
attribute is a key to the proper operation
of your form, as it provides a unique iden-
tifier to the information to be contained
by INPUT. Just as variables in a program
should be unique, so should the named
SELECT elements. If they are not, you end
up with a routine that continuously writes
new data over the old, negating any value
to the data collected.

To create dynamic \Web
pages that can capture
and store information,
it's necessary to design
a form using additional
HTML elements.

The name assigned to the named
INPUT is arbitrary and could be just about
anything. | prefer to use names that are
easy to remember and which could be
used in developing a database schema for
eventual importation into a database.

In each of the above INPUT elements
we also define a SIZE attribute for each,
along with assigning a name to be dis-
played to the user—First Name, Last
Name, and so on. Finish each line using
the
 element, which creates a new
line and also white space by adding a
blank line to the document, giving addi-
tional separation to each line for read-
ability. Again, we complete this section
with the </P> or paragraph tag to create
a new line.

The final section of this document,
lines 34 through 44, allows the user to
input additional comments. To accom-
plish this, we use the <TEXTAREA> and
</TEXTAREA> tags. As with the names
assigned to INPUT elements above, we
assign a unique name to TEXTAREA to
capture the data.

We begin at line 34, with the text
“Comments” displayed, followed by the

 tag. Next, the TEXTAREA tag
defines our text variable, called simply
“text,” finishing with a ROW and COLS
definition to display a box for the text that
will be 8 lines long and 60 columns wide.
(For future use, please note that, although
you have defined a text box that is 8 lines
by 60 columns, there is no limitation on
how much text one can actually enter into
the box. Therefore, when you are imple-
menting your program or script to parse
and capture the data, be sure to create a
field to capture more data than the text
box can.)

Next, lines 37 and 38 use the submit
and reset input types to either clear and
reset the forms default values or submit
the form for processing. The form is now
complete, so in the remaining lines 39
through 44, use the </FORM> tag and
sign the form with your e-mail address.
Note &It and > at the beginning and
end of the address. These are special
insertion codes to insert specific characters
into the document. If used, they are fol-
lowed by a semicolon to indicate the end
of the insertion code. In this case, the “less
than” and “greater than” symbols will sur-
round the address text.

We finish with a hypertext anchor and
link back to the home page using an
anchored image. To compete the page,
we contain our original declarations of the
document body and the document itself.

This is just a starter on using HTML
forms for creating interactive forms. There
is a great deal more you could do. Fur-
ther, by using a shell script, C program
or Perl routine, you can easily capture the
information and ship it off to your data-
base.

Glenn K. Schulke is president of Open
Technologies, Inc., a systems integrator
specializing in software integration ser-
vices, located in Tempe, AZ. He can be
reached at gschulke@aol.com.

