
A Report from the UniForum Technical Steering Committee

In 1964, the computer industry was “rev-
olutionized” by the introduction of the
16-bit minicomputer. In 1978, the mini-

computer had started the transition to 32
bits. By 1994, the transition to 64 bits was
under way. There appears to be a mani-
fest constant of about 15 years for each of
these “epochs”: Five years are expended
in market establishment, five years for rapid
product growth and a further five under
the pressure of product insufficiency.

The first Unix system provided 16-bit
memory addressing and 16-bit disk
adddressing. By the mid-1970s, the 16-bit
file programming interface had expand-
ed. The “new” interface increased the
maximum size of a file to 31 bits, allowing
files to have 2GB of addressability (mean-
ing that it gives an application the ability
to move to any given address or position
within a file up to 2GB in size). Because
the developers of Unix believed it was
important to simplify rather than compli-
cate, access to the file system was pro-
vided through the same programming
interfaces used to access individual files.
This simplification enforced on file sys-
tems the same limitation that constrained
ordinary files to a maximum size of 2GB,
which is no longer sufficient to support
enterprise-class applications.

Like the transition from 16 to 32 bits,
the evolution from 32 to 64 bits is hap-
pening only as the business climate
requires it. Niche markets have already
achieved 64-bit development because of a
need to solve narrowly focused problems.
In a commodity business (a status the mini-
computer industry has achieved), splashy
features are not practical.

Although database vendors have
allowed data sets to grow beyond 2GB by
joining multiple files into a single, logical
data set, this awkward solution is visible
to the user. For several years, applications
suppliers have been requesting file sizes
beyond the 32-bit limitations present on
current Unix systems. The first implemen-
tations appeared as large file systems that
provide support for 2GB files on 4GB file
systems. While this enables better use of
the disks that are appearing on the mar-
ket, it does not meet the needs of the
applications.

Partial Transition
Distributed systems have already accom-
modated the expected growth to 64-bit
files. Both the Network File System (NFS)
and the Distributed Computing Environ-
ment (DCE) provide protocols that sup-
port 64-bit files. Without file system inter-
face support, this has gone largely
unnoticed, but the stage is set.

If the stage is set and the pressure is
building, what is limiting the development
of 64-bit systems? The high-volume, low-
cost nature of commodity markets
inevitably leads to standardization, and
customer investment mandates release-to-
release compatibility. The combination of
standardization and compatibility can
inhibit progress. While there is a customer
need to extend to 64 bits, these same cus-
tomers do not want to be forced to invest
in systems that obsolete their present
investments.

To make a transition from one para-
digm to another, a migration strategy may
include temporary programming inter-

faces. However, system vendors are reluc-
tant to introduce programming interfaces
that have limited lifetimes. The reason for
this reluctance is not because such inter-
faces are difficult to develop but because
they are difficult to obsolete. Without a
transition period, a quantum leap from
one paradigm to another can leave cus-
tomer investments in the lurch.

A set of programming interfaces has
been developed by independent software
vendors (ISVs) and system vendors that
permits access to 64-bit files on systems
that “naturally” support 32-bit files. These
interfaces, informally known as the Large
File Summit interfaces, are intended to
provide a transitional environment as
applications are migrated from the exist-
ing 32-bit systems to the future 64-bit sys-
tems. Because the pressure to develop
these interfaces came largely from the ISV
community, their appearance on systems
will be driven by the availability of the
applications that need them. In general,
end users will not request these interfaces,
but they will require the applications that
need them. These interfaces are not
expected to appear in any programming
standards because of their transitional
nature, although they have been devel-
oped with the same degree of attention
applied to Posix and the Single UNIX
Specification.

Why 64 Bits?
The need for 64-bit computing can be
generalized into two classes of applica-
tions: those that require large files and
those that require large memory. Data-
base servers are an example of those that
need large file access. While database
servers have been breaking databases into
multiple files to exceed the 2GB limita-
tion imposed by most systems, this is only
a stopgap measure. As soon as systems
with 64-bit files are available, database
vendors will port to these platforms and
expect to achieve tremendous improve-
ments in performance. Database programs
that cache records also benefit from
greater memory.

On the other hand, simulation pro-
grams exemplify those that need large
memory access. Recent advances in the
simulation of mechanical systems have sig-

Each month, the TSC examines a key

emerging technology or its use. This

time, we evaluate the transition to

64-bit systems.

The Trend Toward 64 Bits

38 UniForum’s ITSolutions   JU LY  1 9 96

Information Technology Demystified

B y  L a r r y  D w y e r



nificantly improved performance at the
expense of memory. The more memory
that is present, the more sharply the cus-
tomer can tune the accuracy of the simu-
lation while retaining its previously estab-
lished elapsed time.

Applications that are not expected to
require either large memory or large files
include spreadsheets, word processors,
viewgraph generators and mail user
agents. This means the pressure to migrate
to 64 bits is neither universal nor com-
pelling for the class of applications most
frequently used by personal computer
users. While some systems introduced to
satisfy the large file/memory business will
be exclusively 64-bit, some will simulta-
neously support both 32- and 64-bit pro-
gramming interfaces to enable both the
high-performance applications (e.g., data-
bases) and the commodity applications
(e.g., word processors).

The introduction of files larger than
32 bits will bring new challenges to file
archiving. The “classic” model of backup
assumed the system was populated by a
large number of small files. It is possible
to back up these files in groups at differ-
ent times, thereby avoiding unnecessary
downtime during the backup. As files
grow, it is not possible to take the system
down to back up the “files,” because the
entire file system may be populated with
a single file.

What used to be a file is now a record.
Because the system does not know about
the structure of a file, it is no longer pos-
sible for general file system archive utili-
ties to provide a reasonable backup envi-
ronment. It will be up to the application to
provide archiving capability. This repre-
sents an opportunity for collaboration
between ISVs who develop large data-
bases and ISVs who develop archive sub-
systems.

The Data Model
Software standards are designed to be
architecture neutral. If this were not the
case, standards would change each time a
conflicting hardware architecture was
introduced. Architecture neutrality of a
specification lets a vendor implement the
specification on an arbitrary hardware
architecture. The specifications described

in Posix, the Single UNIX Specification
and ANSI C are, by definition, architec-
ture neutral. Unfortunately, these specifi-
cations were developed during a time
when systems were dominated by 32-bit
architectures. This dominance led to the
inadvertent inclusion of architecture-spe-
cific interfaces. While the various stan-
dards can be compatibly implemented on
32-bit systems, they are more difficult to
implement on 64-bit systems.

The dominant 32-bit programming
model assumes that the size of an integer
equals the size of a long integer and also
equals the pointer size. This is known as
the ILP-32 (IntegerLongPointer-32-bits)
model. If the natural progression to 64
bits is followed, one might expect the 64-
bit data model to be ILP-64. Unfortunate-
ly, it is not possible to write a program
that strictly conforms to ANSI C and
accesses all of the natural integer data
sizes (8 bits, 16 bits, 32 bits, 64 bits, point-
ers) unless one breaks the assumption that
the size of a long integer equals the size
of an integer. To accommodate strict con-
formance to ANSI C, a different data
model has been chosen. This allows the
application developer to create data types
of 8-bit integers (char), 16-bit integers
(short), 32-bit integers (int), 64-bit inte-
gers (long) and 64-bit pointers (*). This
data model is designated LP-64 (Long-
Pointer-64-bits).

With the realization that LP-64 is the
correct answer, DEC, Hewlett-Packard,
IBM, Novell, SCO and Sun Microsystems
jointly endorsed the LP-64 data model and
have generated recommendations to
X/Open to amend the Single UNIX Spec-
ification to be “more” architecture neu-
tral. Less than 20 changes were needed
to improve the core specification. (These
changes will appear in a future version
of the specification.)

Although the LP-64 decision does not
equate directly into a standard, the com-
panies that endorsed the LP-64 decision
are treating it as if it were a standard and
will introduce 64-bit systems based on the
LP-64 data model.

What It Means to ISVs and End Users
Applications that must be migrated to 64
bits will have to be inspected to remove
dependencies on ILP-32 versus LP-64. All
uses of “int” and “long” have to be aligned
with the data definition needs of the appli-
cation. This inspection and correction is
not simple and could introduce unneces-
sary errors into the code. The only appli-
cations that are expected to be upgraded
are those that cannot offer competitive
solutions without resorting to 64-bit point-
ers (such as databases and simulators).

It is expected that many system ven-
dors will provide systems that simultane-
ously support ILP-32 and LP-64. This
allows applications that do not need to
be migrated to 64 bits (such as word
processors) to avoid the unnecessary
changes required of an LP-64 application.
On systems that don’t support both ILP-32
and LP-64, applications will have to be
modified.

Some applications that take advantage
of the emergence of 64-bit systems are avail-
able now, and more will be ported to the
64-bit environment as business needs are
encountered. Customers will continue to
use 32-bit systems to run the applications
that do not yet need 64-bit memory or 64-
bit file systems. As hinted earlier, the market
presently is in the second year of the five-
year cycle needed to establish the market.
By 1999, 64-bit systems should be into the
rapid-growth phase for a product. Perhaps
by 2011, we will be going through a similar
exercise to achieve the 128-bit paradigm.

It should be remembered, though, that
nature abhors a vacuum. As 64-bit sys-
tems become available, they will create a
vacuum that will draw application devel-
opers to solve problems in ways that
could not have been considered when
systems were limited to 2GB.   

Larry Dwyer is a system architect for
Hewlett-Packard Co. in Cupertino, CA. He
can be reached at ld@hpldkbd.cup.hp.com.

IT

J U L Y  1996 UniForum’s ITSolutions 39

The pressure to
migrate to 64 bits
is not universal.


