
A Report from the UniForum Technical Steering Committee

An important buzzword in the infor-
mation technology vocabulary to
emerge over the past few years is

middleware. It has become a catchall for a
large, sometimes confusing assortment of
client/server technologies and has served
as a rubric for all the products claiming to
facilitate distributed applications.

The term is subject to almost as many
definitions as there are IT practitioners and
pundits. One popular definition comes
from Orfali, Harkey and Edwards in Essen-
tial Client/Server Survival Guide (Van Nos-
trand Reinhold, 1994), who define it as
the “/” in “client/server”; that is, the in-
between stuff that connects the two.
Another—more skeptical—definition
comes from Mark Hanner of the Meta
Group, quoted in InfoWorld (Dec. 25,
1995), who labels it “the thing that comes
between you and your data.” By any def-
inition, middleware is a collection of
important technologies that are much in
the spirit of open systems.

Middleware Categories
For convenience, contemporary middle-
ware can be divided into three categories:
data-oriented middleware, intended to
permit the client application to be writ-
ten without regard for the physical loca-
tion of the data; message-oriented mid-
dleware (MOM), for passing messages
reliably between applications; and request-
oriented middleware, for enabling dis-
tributed applications to execute transac-
tions and make requests of one another.

The key component of data middle-

ware is the database management system
(DBMS). Most of the popular relational
DBMSs either function directly as a con-
duit for distributed data access or, through
additional data gateway products, are
extended to enable remote data access.
Stored structured query language (SQL)
procedures are also a form of middleware,
through which a client can request the
retrieval and transmission of routinely
accessed data for local use.

There are many different approaches
to data-oriented middleware. Microsoft’s
ODBC and the related X/Open CLI inter-
face allow considerable database indepen-
dence and transparency in accessing one
or more server DBMSs from a client pro-
gram. Tools for data replication propagate
changes in a master database to clients and
data hubs to synchronize local copies of
the data with the master copy. Complete
data files can be copied automatically via
managed file transfer products. Soon,
DBMSs will provide distributed update
capability using middleware, although today
this functionality is still problematic.

The main advantage of data-oriented
middleware is that applications require
only minimal changes (if any) to access
remote data. For the most part, the infra-
structure required to move and access data
is external to the program. While this sim-
plifies the life of the programmer, it leads
to one of the potential disadvantages of
this class of products—the operational
complexity of synchronizing data move-
ment and the related difficulty of guaran-
teeing data consistency when something

goes wrong. This approach moves the
complexity from programmers to database
administrators and operations staff.

Message-oriented middleware includes
protocol-independent messaging and
message queuing. Many MOM products
guarantee reliable delivery of messages
and queued data. MOM permits applica-
tions to be designed around the concept
of filling queued requests and makes pos-
sible the implementation of informal
workflow structures.

Request-oriented middleware includes
products for transaction processing (TP),
remote procedure calling (RPC) and object
request brokering (ORB). The use of a TP
monitor enables a distributed application
to provide transactional integrity through
two-phase commitment and preservation
of the so-called ACID properties:

• Atomicity: the transaction succeeds
or fails as a unit.

• Consistency: the results of execut-
ing a transaction are always consistent.

• Isolation: transactions are indepen-
dent of one another.

• Durability: a committed transaction
is permanent and must survive a system
failure.

The RPC paradigm allows applications
to request remote services as though they
were local procedures. Object request bro-
kers permit applications to make requests
of one another transparently. One RPC
product, the Distributed Computing Envi-
ronment (DCE), also supplies the securi-
ty, directory and time services required in
a distributed applications environment.

The use of a request-oriented middle-
ware product permits applications to be
written according to the request/response
paradigm. This application architecture
fits well with graphical user interfaces and
facilitates the migration to object tech-
nology. In fact, many organizations are
creating informal object structures for
common business objects and system ser-
vices using existing TP monitors or RPC
products so they may be in a position to
exploit object technology as it evolves in
CORBA-compliant and COM/OLE envi-
ronments. They are using ORB middle-
ware to position themselves to take

Each month, the TSC examines a key

emerging technology. This time, we

evaluate the capabilities of middle-

ware.

The Muddle of Middleware

44 UniForum’s ITSolutions MARCH 1996

Information Technology Demystified

B y D e r e k K a u f m a n

advantage of component technology
when it becomes widespread.

Guiding Principles
The principles behind middleware are to
permit applications to move freely within
the computing infrastructure and the
enterprise, and to insulate applications
from underlying technologies, particular-
ly the complexities of communications,
networking and differing operating sys-
tem application programming interfaces
(API)s. Both principles are highly consis-
tent with the aims of open systems.

The location independence provided
by middleware permits applications to be
deployed on the bases of performance,
reliability, economics and business con-
cerns. Applications become free to migrate
from server to client; from server to mid-
dle tier and back; from desktop to server;
from server to server; and, in the extreme
case of mobile applications, to wander
geographically.

In the isolation role, middleware is a
strong technology for fostering platform
independence. Middleware permits the
business logic of an application to be writ-
ten independent of the operating system
context in which it executes. Middleware
shields the application from knowing how
it has been invoked and how it must
return results.

A future vision for middleware builds
on this open systems role to make possible
an object-oriented architecture in which
cooperating business objects make requests
of other objects and provide services for
one another. In this vision, today’s mid-
dleware will ally with object technology to
provide complete location transparency
and platform isolation. In the future, mid-
dleware will provide the software sockets
and backplane into which component
applications can be fitted to build new
application systems for the enterprise, thus
ushering in the era of practical reuse and
component technology.

How far off is that vision? In some
environments, it can be realized in limit-
ed fashion today; some people claim to
be selling it. In fact, it is close enough that
many application development teams are

building their systems now—using avail-
able middleware products—with the
expectation that these applications will
evolve into the object-oriented paradigm.
The benefit of middleware to these teams
comes not so much in the specific prod-
uct features currently available, but rather
in the ability to structure their applications
to be service-oriented and event-driven.

Middleware is already an important
open systems technology. If it is applied
according to open systems principles and
with an eye to the future, the benefits of
middleware may include:

• Increased longevity for applications.
• Reduced response time to changes

in the business and technical environment.
• The ability to make continuous

improvement in the computing platform
and development tools without impact-
ing applications.

• Reduced development cost through
reuse at multiple levels.

• Increased programmer productivity.
• Improved quality of application soft-

ware: reliability, availability, throughput,
accuracy, maintainability and manageability.

• Increased application adaptability.
• Increased application scalability.
Like all other open technologies, mid-

dleware must be applied with caution.
Users must be certain that any middleware
product used is standards-based and truly
open to avoid lock-in and dependency on
proprietary interfaces.

Derek Kaufman is middleware manag-
er for Levi Strauss & Co. in San Francisco
and a member of the UniForum Techni-
cal Steering Committee. He can be reached
at uslev5y4@ibmmail.com.

IT

MARCH 1996 UniForum’s ITSolutions 45

